Math 1A: Calculus

Handout: Limits, Part I

Discussions 201, 203 // 2018-09-07

Problem 1 (Conceptual questions).

- (1) True or false: if the numbers f(1), f(0.1), f(0.01), f(0.001), ... tend towards 3, then $\lim_{x\to 0} f(x) = 3$.
- (2) Give an example of a function f and a number a such that the values of f(a), lim_{x→a⁺} f(x), and lim_{x→a⁻} f(x) are all different. (You can just draw the graph of such a function.)
- (3) When $\lim_{x\to a^+} f(x)$ differs from $\lim_{x\to a^-} f(x)$, what can we conclude about $\lim_{x\to a} f(x)$?
- (4) Is it true that $\lim_{x\to a} f(x) = f(a)$ for any f and any a?

Problem 2 (Limit evaluation). Determine whether the limit exists, and if it does, evaluate it.

(1)
$$\lim_{x \to 3} (x^{3} + 2x - 7)$$

(2)
$$\lim_{x \to 0} \frac{x^{7} + x^{4} + x^{2}}{5x^{4} + x^{3} + 5x}$$

(3)
$$\lim_{x \to 0} \frac{x^{7} + x^{4} + x}{5x^{4} + x^{3} + 5x^{2}}$$

(4)
$$\lim_{x \to 2} \frac{x^{2} + x - 6}{x^{2} - 4}$$

(5)
$$\lim_{x \to \pi/2} \left((x - \pi/2) \cos(x) \right)$$

(6)
$$\lim_{x \to \pi/2} \left((x - \pi/2) \cos\left(\frac{1}{x - \pi/2} + x^{3} - 17\right) \right)$$

(7)
$$\lim_{x \to 0} \left(\frac{\sqrt{2x + 1}}{x} - \frac{1}{x} \right)$$